PROPOSICIÓN 17 LIBRO XIII

Proposición 17. Construir un dodecaedro contenido en una esfera como en las figuras anteriores, y demostrar que el lado del dodecaedro es la recta sin razón expresable llamada apótoma.

java applet or image

Sean ABCD y CBEF dos planos del cubo antes mencionado formando ángulos rectos entre sí. Biseccionar los lados AB, BC, CD, DA, EF, EB, y FC por los puntos G, H, K, L, M, N y O respectivamente, y trazar GK, HL, MH, y NO. Cortar las líneas rectas NP, PO y HQ en extrema y media razón por los puntos R, S y T respectivamente, y sean RP, PS y TQ sus segmentos mayores. Levántese RU, SV y TW desde los puntos R,S y T formando ángulos rectos con los planos del cubo hacia la parte exterior del cubo, y háganse iguales a RP, PS y TQ. Trazar UB, BW, WC, CV y VU. [XIII 15, I 10, II 11, VI 30, XI 11, I 3]. Yo digo que el pentágono UBWCV es equilátero, está en un plano, y es equiangular. Trazar RB, SB y VB. Entonces, dado que la línea recta NP se corta en extrema y media razón por R, y RP es el segmento mayor, entonces la suma de los cuadrados de PN y NR es triple del cuadrado de RP. [XIII 4]. Pero PN es igual a NB, y PR es igual a RU, entonces la suma de los cuadrados de BN y NR es triple del cuadrado de RU. Pero el cuadrado de BR es igual a la suma de los cuadrados de BN y NR, entonces el cuadrado de BR es triple del cuadrado de RU. De ahí que la suma de los cuadrados de BR y RU es cuádruple del cuadrado de RU. [I 47]. Pero el cuadrado de BU es igual a la suma de los cuadrados de BR y RU, entonces el cuadrado de BU es cuádruple del cuadrado de RU. Por lo tanto BU es doble de RU. Pero VU es también doble de UR, porque SR es también doble de PR, esto es, de RU, entonces BU es igual a UV. De manera semejante se puede demostrar que cada una de las líneas rectas BW, WC y CV son también iguales a cada una de las líneas rectas BU y UV. Por lo tanto el pentágono BUVCW es equilátero. Yo digo además que está en un plano. Dibujar PX desde P paralela a cada una de las líneas rectas RU y SV y hacia la parte exterior del cubo, y trazar XH y HW. [I 31]. Yo digo que XHW es una línea recta. Dado que HQ se corta en extrema y media razón por T, y QT es el segmento mayor, entonces HQ es a QT como QT es a TH. Pero HQ es igual a HP, y QT es igual a cada una de las líneas rectas TW y PX, entonces HP es a PX como WT es a TH. Y HP es paralela a TW, porque cada una de ellas forma ángulos rectos con el plano BD, y TH es paralela a PX, porque cada una de ellas forma ángulos rectos con el plano BF. [XI 6]. Pero si los dos triángulos XPH y HTW, los cuales tienen dos lados proporcionales el uno del otro, se construyen por un ángulo de modo que sus lados correspondientes sean paralelos, entonces las líneas rectas restantes están en línea recta, por lo tanto XH está en línea recta con HW. [VI 32]. Pero todas las líneas rectas están en un plano, por lo tanto el pentágono UBWCV es un plano. [XI 1]. Yo digo además que también es equiangular. Dado que la línea recta NP se corta en extrema y media razón por R, y PR es el segmento mayor, mientras PR es igual a PS, entonces NS también se corta en extrema y media razón por P, y NP es el segmento mayor. Por lo tanto la suma de los cuadrados de NS y SP es el triple del cualdrado de NP. [XIII 5, XIII 4]. Pero NP es igual a NB, y PS es igual a SV, entonces el cuadrado de NS y SV es triple del cuadrado de NB. De ahí que la suma de los cuadrados de VS, SN y NB sea cuádruple del cuadrado de NB. Pero el cuadrado de SB es igual a la suma de los cuadrados de SN y NB, entonces la suma de los cuadrados de BS y SV, esto es, el cuadrado de BV, en el ángulo VSB es recto, es cuádruple del cuadrado de NB. Por lo tanto VB es doble de BN. Pero BC es también doble de BN, entonces BV es igual a BC. Y, dado que los dos lados BU y UV son iguales a los dos lados BW y WC, y la base BV es igual a la base BC, entonces el ángulo BUV es igual al ángulo BWC. [I 8]. De igual manera podemos demostrar que el ángulo UVC es también igual al ángulo BWC. Por lo tanto los tres ángulos BWC, BUV y UVC son iguales entre sí. Pero si en un pentágono equilátero tres ángulos son iguales entre sí, entonces el pentágono es equiangular, por lo tanto el pentágono BUVCW es equiangular. [XIII 7]. Y se ha demostrado que también es equilátero, por lo tanto el pentágono BUVCW es equilátero y equiangular, y está sobre el lado BC del cubo. Por lo tanto, si hacemos la misma construcción sobre cada uno de los doce lados del cubo, quedará construida una figura sólida contenida por doce pentágonos equiláteros y equiangulares, que se llama dodecaedro. [XI Def. 28]. Se trata ahora de comprenderlo en la esfera dada, y demostrar que el lado del dodecaedro es la línea recta irracional llamada apótoma. Se produce XP, y sea la línea recta producida XZ. Entonces PZ encuentra el diámetro del cubo, y se biseccionan uno al otro, porque esto ha sido demostrado en el último teorema del undécimo Libro. [XI 38]. Córtense por el punto Z. Entonces Z es el centro de la esfera que comprende el cubo, y ZP es la mitad del lado del cubo. Trazar UZ. Ahora, dado que la línea recta NS se corta en extrema y media razón por P, y NP es el segmento mayor, entonces la suma de los cuadrados de NS y SP es el triple del cuadrado de NP. [XIII 4]. Pero NS es igual a XZ, porque NP es también igual a PZ, y XP es igual a PS. Pero PS es también igual a XU, porque también es igual a RP. Entonces la suma de los cuadrados de ZX y XU es triple del cuadrado de NP. Pero el cuadrado de UZ es igual a la suma de los cuadrados de ZX y XU, entonces el cuadrado de UZ es triple del cuadrado de NP. Pero el cuadrado del radio de la esfera que comprende el cubo es también el triple del cuadrado de la mitad del lado del cubo, porque previamente se ha mostrado como construir un cubo comprendido en una esfera, y se ha demostrado que el cuadrado del diámetro de la esfera es el triple del cuadrado del lado del cubo. [XIII 15]. Pero, si el todo está tan relacionado con el todo como la mitad con la mitad, y NP es la mitad del lado del cubo, entonces UZ es igual al radio de la esfera que comprende el cubo. Y Z es el centro de la esfera que comprende el cubo, por lo tanto el punto U está en la superfície de la esfera. De igual manera podemos demostrar que cada uno de los ángulos restantes del dodecaedro está en la superfície de la esfera, por lo tanto el dodecaedro ha sido comprendido en la esfera. Yo digo además que el lado del dodecaedro es la línea recta irracional llamada apótoma. Dado que, cuando NP es cortada en extrema y media razón, RP es el segmento mayor, y, cuando PO se corta en extrema y media razón, PS es el segmento mayor, entonces, cuando la recta entera NO es cortada en extrema y media razón, RS es el segmento mayor. Así, dado que NP es a PR como PR es a RN, con los dobles también es verdadero, porque las partes tienen el mismo radio que los equimúltiplos, entonces NO es a RS como RS es a la suma de NR y SO. Pero NO es mayor que RS, entonces RS es mayor también que la suma de NR y SO, por lo tanto NO se ha cortado en extrema y media razón, y RS es el segmento mayor. [V 15]. Pero RS es igual a UV, entonces, cuando NO es cortada en extrema y media razón, UV es el segmento mayor. Y, dado que el diámetro de la esfera es racional, y el cuadrado es el triple del cuadrado del lado del cubo, entonces NO, que es el lado del cubo, es racional. Pero si una línea racional se corta en extrema y media razón, cada uno de los segmentos es una recta irracional llamada apótoma. Por lo tanto UV, que es un lado del dodecaedro, es una recta irracional llamada apótoma. [XIII 6]. Q.E.F.

COROLARIO
A partir de esto queda claro que cuando el lado de un cubo se corta en extrema y media razón, el segmento mayor es el lado del dodecaedro. Q.E.D.

java applet or image



Copyright © 1996/1997 (Juny, 1997)
D.E.Joyce

Clark University

© Drets de Traducció al català cedits 2002/2003
Jaume Domenech Larraz
info@euclides.org


© Copyfreedom 2012 JDL Euclides.org